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LA._ Abstract

.U A data-driven method of choosina the bandwidth, h, of a kernel density 0

estimator is proposed. It is seen that this means of selecting h is asymp-

totically equivalent to taken the h that minimizes a certain weighted version

of the mean integrated square error. Thus, for a given kernel function, the

bandwidth can be chosen optimally without making precise smoothness assumptions

on the underlying density. The proposed technique is a modification of cross- ...

validation. ,.
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1. Introduction

Consider the problem of estimating a univariate probability density function,

f, using a sample X 1 ... , X from f. Let f = f(x, X .. X ) denote an estima-

tor. A common error norm is Mean Integrated Square Error, which is defined as

follows. Let w(x) be some norinegative "weight function." Define

(1.1) MISE = Ef [f(x)-f(x)]w(x) dx.

An estimator which has been studied extensively (see, for example, the survey

by Wertz (1978)) is the kernel estimator which is defined as follows. Given a

"kernel function," K (with f K(x) dx = 1), and a "bandwidth," h>O, let

A n x-X.
(1.2) '(x,h) = - -  K(

1 h

The "bandwidth problem" consists of specifying h=h(n) in some asymptotically

(as n- n) optimal fashion. Under very precise assumptions on the amount of smooth-

ness of f, there are many results where h(n) is given deterministically to asvmp-

totically minimize MISE or some other error norm. See, for example, Rosenblatt

(1956), Parzen (1962), or Watson and Leadbetter (1963). Unfortunately, this type

of result is virtually useless in practice because tbe QptUimal h(n) is a

function of the (unknown) smoothness of f. This may be seen especially clearly

from the results of Stone (1980) who deals with a continuum of smoothness classes.

Thus there has been a considerable search for techniques which use the data to

specify h.

A popular technique of this type is the "cross-validated" or "pseudo-maximum-

likelihood" method introduced by Habbema, Hermans, and van den Broek (1974). This

is defined as follows. For j=l,..., n form the "leaveoneout" kernel estimator,

A 1 n x-X.
(1.3) f (x,h) (n-l)h i=l h -

isj L.

* I ./
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A
Then take h to maximize the "estimated likelihood,"I

A n A

L(h)= 1 f.(X ,h) .

j= " J

A recent paper by Chow, Geman and Wu (1983) contains some interesting heuris-

A A

tics and a consistency theorem for the estimator f(x,hl). Despite these encoura-
I

ging results, this estimator can be very poorly behaved. Section 2 contains

examples which illustrate some of the pitfalls that may be encountered by this

estimator. That section also contains a series of heurLsticallv motivated modi-

rications of L(h), leading to the version that is seen to be asymptotically op-

timnl in the' theorems of section 3. The reader who is only interested in the

Form of the optimal estimator should skip all of section 2 but (2.11).

Section 5 contains some remarks. The last section contains the proof of

the optimalitv theorem.

2. Modification of cross-,validation.
•A A

To see how f(x,h1) can be poorly behaved, consider the following example.

Suppose the density f has cumulative distribution function F so that for some

E>0,

-1/x for xE(O,F)F~x) :e

Such an F could easily be constructed to be infinitely differentiable. Let

Xgl) and X (2 denote the first two order statistics of X1 ..... X . It follows

from example 1.7.3 and Theorem 2.3.2 of Leadbetter, Lindgren and Rootzgn (1983)

that,

lim li P[X (2-X(1) >

3- n (logn)"

But for compactly supported K (such as, for example, the "optimal kernels" of

*Epanechnikov (1969) or Sacks and Ylvisaker (1981)), 1l(h)=O unless h~c(X( 2)-X(1 ))

A

for some constant c. Thus, the cross-validated h1 must converge to 0 slower

than any algebraic rate.

I
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2

By the familiar variance and bias decomposition (see Rosenblatt

(1971)) the mean square error may be written:

A 2 1 2s
E[f (x,h)-f(x)] = O( O(h

where s represents the amount of smoothness that is assumed on f. Hence, it is

apparent that the estimator (XIl) can behave very poorly in the mean square

sense.

Analogous, though not so dramatic, examples can be constructed by taking,

for k large,

kI
F(x) = x for x E (O,E)

or by taking K no longer compactly supported, but with suitably "light tails."

These examples indicate that, even when f is very smooth and compactly supported,

ordinary cross-validated estimators can be drastically affected by data points

where f is close to 0.

A reasonable way to eliminate the above difficulty is the following. Find

an interval [a,b] on which f is known to be bounded above 0. The assumption of

the existence of such an interval seems easy for the practitioner to accept.

Next redefine the estimated likelihood

A n A1 fa,b](Xj)
L2(h) =I f .(Xj,h)

j=l -

A A
and take h2 to maximize L2 (h). Note that cross-validation is performed only

over those observations which lie in [a,b].

A A
.0 The estimator f(x,h,) has been studied by Hall (1982), although he seems to

have arrived at it by considerations different from the above. The notation used

here (different from that of Hall) is due to Peter Bloomfield and will facilitate

the rest of this discussion. Hall's results show that, while the above patholo-

gies cause no problems, this version of cross-validation still behaves subopti-

.. . .. . ...- - .-o .- . - .-. . -. .- .v . . .'. .
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mally with respect to the rate of convergence of mean square error. It is in-

teresting to note that the dominant term in his expansions depends only on the

behavior of f at the endpoints of [a,b].

David RuDpert has suggested the following heuristic explanation of this end-

point effect. Note that if f'(a)<O, there will be more X.'s "just to the left"

of a than "just to the right." Hence if h is taken to be relatively large, more

A

probability mass (of the density f(x,h)) will be moved into the interval [a,b]

which will thus increase L,(h). Hence there will be a tendency for cross-valida-

tion to "oversmooth" (i.e., take h too large). On the other hand, if f'(a)>O,

then, by the same argument, cross-validation will tend to "undersmooth" in order

to keep as much probability mass inside [a,b] as possible. When this effect is

taken into account at both endpoints simultaneously, it is not surprising that

Hall reports oversmoothing when f'(b)-f'(a)>0 and undersmoothing when

f' (b) -f' (a)<0.

With this insight, Ruppert has proposed eliminating this effect in the fol-

* lowing way. First for j=l,..., n define

= ;b f (x,h) dx
(2.1) pj a aj

Next redefine the estimated likelihood

A

n f.(X.,h) 1 (X)
L (h) HI (-)-A--,) ) [a,bJ j

j=1 pj

A A
and take h, to maximize LM(h) .

This estimator will now be investigated using heuristics developed by Chow,

Geman and Wu (1983). First it will be convenient to define

(2.2) p fb f(x) dx
a

* A bA
p f= f(x,h) dx

a

0
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For these heuristics assume K is nonnegative and f(x)logf(x) is integrable. By

a Law of Large Numbers,

n
1 logL (h) 1 (X )[logf(Xj,h)-logp]
n g [ a,b) j

(2.3)
A A

f(x)logf(x,h) dx - plogp

But now by Jensen's Inequality,

AA
(2.4) a1  xslgf b f(x) l0g(pf(x )h)) dxb1gJ f(x,h) dx) =0

a f(x) p

with equality if and only if,

A
f(x,h) f(x) , a.e. on [a,b]

A pP

Hence
^bfXJg A b

(2.5) f(x)logf(x,h)dx - plogp S fa f(x)logf(x)dx - plogp.

A
Thus, L is essentially using the conditional Kullback-Leibler information (the

3
A

left hand side of (2.4)) as a measure of how well f(x,h) approximates f(x). But
A

this measure has the disturbing property that it fails to distinguish between f

and f when they are unequal but proportional to each other.

Peter Bloomfield has suggested overcoming this difficulty by sharpening the

inequality (2.5) using the following device. Note that for x,y>O,

(2.6) ylog(x/y) - x - y

with equality only when x = y. Hence

A A
plogp - plogp p -p

It now follows from (2.5) that

fb (X)og (X b f(x)logf(x)dx
(2.7) Ao a fh)dx - fa

A
with equality if and only if f(x) = f(x,h) for almost all x [a,b]. Now rever-

-. _ - . - . . • . . . . . " " . . . . . .' " - . - i ' " : •" ' ' " "' " ' ' " -
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sing the heuristic argument (2.3) it is apparent that the estimated likelihood

should be redefined as

A
A A p/p] [a,b]
L4(h) = I [fj(X.,h)e

A Aand h4 taken to maximize L4(h ) . A

Peter Bloomfield has pointed out that L 4(h) may be somewhat simplified, from

the computational viewpoint, in the following way. Note that

Pi = (n-i)-' y P(X) '
iij

where

(2.8) .(x) = a h K ) d

Hence, by a Strong Law of Large Numbers,

n . n
exp(-[ (X )p./p) = exp(- I 1 (Xj)(n-1) -1 i(X)/P) =

j=1 [a,b] j= j [a,b] ij

n
exp(- P o(X.)(n-1) 1[ bl(X)/i=1 j~it,

n e-(Xi)
1=1

IP

. - " . . .- -Z . . _ -,i -i .- "i '" - . - '/ -- -il . . . " " 7- .. '- . ii -ii ii i .. ii l Z .. . - '. i~ i " "
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Thus redefine the estimated likelihood

n A 1 (X )-P(Xj)
A [a,b]
L5 (h) R f (Xj,h) e

j=l

Note this also avoids difficulties about the fact that p i. (h) is unknown.

One last refinement will now be made. Many authors, starting with Parzen

(1962) and Watson and Leadbetter (1963), have noticed that the asymptotic pro-

perties of K can be greatly improved by allowing K(x) to be negative for some

x. The results of this paper apply to either this type of kernel or the non-
A

negative kernels which guarantee that f is "range-preserving." However the

proofs in this paper involve taking logarithms, so it is necessary to do some

truncation. Define, for xER

A+ (A

(2. g) f (x,h) = max(f(x,h),O) ,

and for j=l,..., n,

A+A

(2. 10) f.(x,h) = max(fj(x,h),O)3

Now redefine the estimated likelihood

A nA lnaAb]X)-(Xj)+ ( X -- ) (fa(bj je
(2.1L) L(h) fl f(X j,

E.j=l -

• A A

and take h to maximize L(h). It will be seen in section 3 that the estimator

A A
f(x,h) has excellent asymptotic properties.V An interestifng side effect of the above truncation is the followin. f

A A
for some h there is an X.a,b] for which fj(X ,h)<0, then Lfh) = 0. Hence,

~A
such an h can not be chosen to be h. Thus, since

f(Xh) = f f.(X., h) + K(0)

A A A A

if K(O)-G, then for jA, f(Xh)>O, Hence, the estimator f(x,h) has the property

46~i
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2b

that it is range-preserving (i.e.: >0) at each data point in [a,bj. Of course,

the experimenter who requires that f be range-preserving outside the interval

[a,b] can guarantee this by taking K nonnegative.

3. Asymptotic Optimality Theorems

It is well known (see, for example, Rosenblatt (1971)) that MISE admits

2
the variance-bias expansion

(3.1) MISE(h) = n-1 h -(.f(y)w(v)dy)(.K(u) 2du) + o(n- h- ) + sI(h),

where the bias 2 part is:

(3.2) sf(h) = . K(u)f(y-hu)du-f(y)] 2 w(y)dy.

Since the papers of Rosenblatt (1956) and Parzen (1962), expansions similar

to the above have been handled as follows.

Assume K satisfies:

'K(x)dx = 1,

(3.3) "xJK(x)dx = 0,

rxkK(x)dx > 0.

Also assume f has a bounded k-th derivative. By Taylor's Theorem,

(3.4) sf(h) = h 2k [f (k) ] 2w(y)dy[.ukK(u)du]/k!

6 Now to find the "optimal bandwidth", ignore the terms o(n- 1I ) and ,(h2k

(which are (if lower order, uniformly over h) in (3.1) and (3.4), and choose

h to minimize

n 1  1 2k
(3.5) An-h Bh

where A ind B are the obvious coefficients in (3.1) and (3.4).

While this solution to the bandwidth problem is theoretically pleasing,

it is useless in practice because the quantities A and B are unknown. The

6!
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ma in theorem oft th is paper p) roy ides a mieans o ovvicom i nt tli Is d Ifr i on11 I . I n

part i cu lar i t is seen tha t (tip t o an add itive constLant) t the f uic t ion

appro-ximates MISE(h) in the same way as does (3.5) and "'o the h thiat max\imizes;

I.(h) is optimal in the same sense, as the t rad itioanai "'optimal baindwidth''

The main theorem of' this paper also holds in a scttin, more gene r l than

*thalt just discuIssed. in particular, it is well known that if f has only a botund-

ed p)-th derivative where p,1k then

s f h) = o(hP)

and the optimal (at least in the sense of exponent of al :alic converkence) h-

m~v ')e found by minimiz ing

-l -1l2
0(n hi ) + 0(h2~

Ehis is perhaps most cleairly seen in the results of Stone (1980). It is

,ko ~well1 knowni that p need not heL an integer by either uisinig Sohoiev space

mcthods or usinF Lipschitz conditions on derivatives. This setting is more

diC fIu L to handle than the above because thiere one know. the optimal Ih is o

th orm

anid only C need be optimized, while here the exponent is also unknown.

In the closecly related scttinw of nionpairaiietr ic regres sion1 Lest irnt i011,

Stone (1982) has posed the problem (see his Question 3) Of finding an optLimal

t,:vidwidth when p) is unknown. The theorem ofI this paper prov ides- a soluition

t, 1.his Probl em, in the above. sense, b\. haowing that,

-2n lugl-(h) 2R + IMISE(h) + o (MIiSE(h)),
p

u ~ ~ ~ ( r if( l vrhwee thIie Lconis t aniiit R i s ineIdn t Iiand is i i %,i en)%-

(1.7) R =pn [hj(X )logf(X.



The2 rea son it t lI, nons Lind ard' 1 U L: It i (oT s~( se C C . !4 1) 1 hS heen i Ilt I_('

,iuced is thait it pro'; ides- aI powerful inailvtic tool. IIn theC s tt ii~ (of p- k, the

uISUal Iaylor expansion t echniqJUCS are LlSele S For showing , resul ts I i k(- (3.6)

bec'IAuSe they only provide an uipper bound on s(h) . Thuis the quint it% (h) i t -

sel V is; used eve rvwhere ill the prool . Another into rcts t ii n role of (11) i S t lid

t s t ailI be2hav [c) r- (s h-0 ) proc dCs a Measure o' f wha t i s us uaI I v c ii I 1,d "smoo thI-

ne-ss' of f whic"h is timore precise than the tria itiorial Lislit olld iL ions Onl

dec iyt i 0e-o inices of Sobolev Spaces.

The main theorem of this paper will now b)e stated Formally. First a very,

mild restriction will be placed on the bandwidth h. For some Small 0, de-

*fine the sequences 1h. and -,h -by

3 . 8 h - nl± a ndL h =n

-.,-here here and bClow the dependence on ii is suppressed. IL will also he assumed

t ha1t theCC L I dni tyVi stii iS:

(3.9) F is,- hounded dbOVU 0 On Za ,hb

3. 10) there are constants M, 0 so that for all x'v

Anothter as;sumpt ion i s that the kernt,1i fUnet ion K satL i sF i Les:

1.2) K is compaict 1%, ,uprtted,

1. 1 1) There re con.stant,, 11.' .o b r :11 1

K (:K) -K "-l

t11II ; 1:1o a> ~ed h bIt til W, kit Un_1 Liki on ll ( I .I is g'ivenl 1)



Theorem 1: Under the assumptions (3.8) - (3.14), given 0 '

lim P sup -2n- gLh-^IS~~
P S) MISE(h)

n--  hh,h] 2 , 0

N disturbing feature of this theorem is that it only applies to h in the

vanishingly small interval [h,h]. The above computations show that (by (i.10))

(3.15) sf(h) = O(h2Y),

and thus the optimal bandwidth is easily inside the interv~il for ' sufficientlv

small. Also Monte Carlo experience with L(h) (see Bloomfield and 'Marro:n (1984))

indicates this assumption is not a problem in practice. Further reassurance

along these lines is provided by

Theorem 2: Under (3.8) - (3.14), if 1 = h(n) denotes any sequence of maxima

of L(h), then

i) h - 0 a.s.

ii) lim Tim P[h<cn 2Y+ ) = 0 .
c-0 n

It should be noted that while Theorem 2 does show h > h (for 6 sufficiently

small) it does not show h - 1 or even establish the consistency of f(x,h). It

is intended only to iive some backing to the above remarks. To save space, the orool

of Theorem 2 will not be given here. The interested reader can find it in

the technical report Marron (1983). The proof of i) is based on techniques of

Chow, Geman and Wu (1983) and it appears that these techniques may be further

extended to establish the consistency o f(x,h). The proof of (ii) is based
qK

on an order statistics result o1 Cheng (1983).

4. Remarks

Remark 4.1 The reader may be surprised that the "vanishin, moment" assump-

tion (3.3) is not use;d in Theorem 1. That theorem savs f(x,h) will have the

best MISE that Is possibie lor the i ven K, but how rood that is is ir rel Ievant

! I
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tp

t.1 the theorem. Of course one should choose a reasonably good K.

Remark 4.2. The fact that optimality is achieved only for a particular

weight function should not be too disappointing. The one used here is quite

natural because MISE is proportional to the expected relative square error:

f(X)-f(X) 21E[( - Xera,bl]
f(X)

It is seen in Marron (1982) that this error norm is precisely the one required

for the application of density estimation to the classification problem. It may

be seen without too much effort that the indicator function in (2.11) may be

replaced by any bounded, measurable nonnegative function q(x), which is supported

inside [a,b], and the theorem will still be true with

w(x) = q(x)/f(x).

Remark 4.3. At first glance one might be disturbed by the fact that the

MISE that is minimized here is limited to the interval [a,b]. In somewhat simi-

lar settings, in the case of estimating a regression function, Gasser and Miller

(1979) and Rice and Rosenblatt (1983) have observed that such a MISE is strongly

affected by the behavior of the unknown function at the endpoints and hence the

bandwidth which minimizes MISE can provide relatively poor estimates in the in-

terior of [a,b]. However, with very little effort, one may see that such an

"endpoint effect" does not occur in the present setting. This is because the

density f extends (and is smooth) outside the interval [a,b] and observations

outside [a,b] are employed in the estimator of this paper. Hence, the MISE of

this paper provides a very reasonable error criterion.

Re-mark 4.4 As with any asymptotiC theory, it still remains to cec'k tliat

the propurtics described by the asymptotics "take effect" for sample sizes which

i rc not prohib itively large. Preliminarv computat ions (for the paper Bloomfield

..



-13-

and Marron (1984)) seem to validate theorem 1 and the heuristics of section 2.

5. Proof of Theorem 1.

This proof uses techniques developed in Hall (1982). It will be useful to

define, for j=l,...,n
- +

f.(X.,h) - f(X.) f.(X ,h) - f(X.)
(5.1) .

f(X.) f(X.)J 2

By Lemma 1 of Hurdle and Marron (1984), letting sup and s~p denote supremum

over xL[a,b] and thE[h,hl respectively,

sup s~p ' f+(x,h) - f(x) , < sup sjp ; f(xh) - f(x) 0

in probability. But by (1.2), (1.3), (3.11) and (3.13) letting sup denote supre-

mum over j=l,...,n,

sup sup s~p nhlfj(x,h) - f(x,h)! =

X-X. x-X.

sup sup s~p (n-l) K- K
x iijh

< 2 sup K(u)
A .R

Hence, by (3.9), using the notation i(A) to mean cardinality of the set

A = tj=l.....n :X.c[a,b]:,

note that

s up u +, < sup 0
h JCA h J FRX

in probabilit v . Now for n=1,2 .... define the event

n = =. for each hj-[h,h] and j -A
n

It follows from the above that

lir P[U I = 1

From (2.11), (3.7) and the above it follows that, for h [Iih], on the event L'
IH

.4 - - " 2. . .
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n
-I-In

n logl-(h) + R n - [I [a,b] (Xj)log(l+A)-,(X.)+p]

j =1

= n- Z [ b(.Xj)(- 2 +r) - Q(Xj) + P]
[a,b] 1.

n

n - I l '(XJ)".- (X.)+p] - n-A + n -  r

j=1 (a )jC:A L JA

where r. denotes the error term of the Taylor expansion of log(1+x).

The remainder of this proof will be split into two lemmas:

Lemma A: Given c > 0,

n [ 1[,b] (X ).>.- (X.)+p]

lim P sup j=1 L 0 >(X
n- h MISE(h) J

Lemma B: Given > 0

, ll g2_MISE(h) I

lim P -sup --- A > 0

L *< p  MISE(h) "

It is enough to establish these because from Lemma B it follows that, for L > C,

lim P sun ' r > , =0.
n.-.,

I MISE(h)

The proof of Lemma A is quite similar in spirit to that of Lemma B. Some

details arc different but these are very similar to the proof of Lemma 2a in

H -rdle and Marron (1984). Hence, this proof is omitted.

P'roof nf L emrma }":

Sirt, Ior n=1,2,... partition the interval. [h,h] by the following means.

,r , .... del inc

1-:" - I/ -Ih (n - n )

Hictn find 1. sovtit

II1



-- -- .. . . . . . ..1 5.

hL - < h 1 ,

and redefine h to be T. Note that the dependence of h. and L on n has been
L

suppressed. Note also that

(5.2) h - h 1+ < - 3 I

and that, as n ,

(5.3) L = o(n1+ 3/ ) .

It will be convenient to adopt the shorthand:

nI

(5.4) A(h) = Ln I- I (X )A2 - MISE(h) MISE(h) -I[a,b]
jj

The idea of this proof is to show that A(h) converges uniformly over the "grid
I

points", h2 , and then to "fill in the gapd'with Lipschitz continuity. More form-

ally, for : > 0, note that

P[sup]A(h)I > C] < I + II
h

where the behavior at the grid points is controlled by

I = P[supIA(hI > C/2]

(where s~p denotes supremum over %=1,...,L), and the behavior between gridpoints

is controlled by

1I = P[sup'A(h) - A(h )1 /21

(where su, denotes supremum over Z=1,...I. and hc[h _,hj). The proof of Lemma 1
B will be complete when the following lemmas are established. -

4 Lemma BI:

I -0.

Lemma B2:

* II 0.

Proof of Lemma BI:

|'
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Note that by an obvious extension of the Chebychev Inequality, for M=2,4,6,...

PjsiqHA(h,)l > E:/7 <p IjA(h )I 0/2]

Lsup Pr Ah )I> c/1

< L sup E(2A(h) )

Thus, by (5.3), it is enough to show that

sup n l+3/ E(A(h))M - 0
h

for M sufficiently large.

6 Next obser-ve that, by computations similiar to those leading to (3.1),

2 -2 -
E(A(h)) =[Ea[f.i(x.,h) - f(X.) f M .)I ( )) ( MISE] MISE =

=[Ef[f.(x,h) - f(x)] 2 w(x)dx - MISE] MISE1

J2

=[(n-1)' h (ff(y)w(y)dy)(fK(u) du) + o(n- h ) + Sf(h)-MISE]MISE-

and so

sup E(A(h)) =O(n)

h

Now using a cumulant expansion (see, for example, (3.33) of Kendall and Stuart

it is enough to show that, for IM sufficiently large, for m=2,. .. M

sup cum M(A(h),...,A(h)) o(nl+1m)j
4 h m

where cumn denotes the m-th order cumulant.
mf

Observe that from (t.3), (5.1) and (5.4.),

6 ~~A(h) I TnV~,) j~ K(-%' l)-f(X 2  f(Xi) 2[a](.)MS 7 MISEl

L J-1 L i~j

4
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2

= n V.. - 1 ,

j=l jj

whvre, by (3.14),

X.-X. ). ]
(5.5) (n-i) K-- - f(Xj f(Xj) w(X')! MISE- 2

S , by using linearity properties of cumulants (see, for example (iv)Zand (v) of

theorem2.. in Brillinger (1979)) the proof of Lemma BI will be complete when it

is seen that, for M sufficiently large, m=2,...,M,

(5.6) sup n cur (V.. V., ... V.. ViJm) =o(n+ )
h j' m I  milVI  imim

where denotes summation over J1 1,...,n, and where denotes sumation

over i1 .... 9m = ],...,n subject to the restrictions i#jlm,...,i#J, and where'm m

denotes summation over i ... ,i = 1,...,n subject to the restrictions
i'

By another of the properties~of cumulants, note that many of the terms in the

summation (5.6) will be 0 because of the independence of XI,...,X n. The nonzero

terms will be handled by grouping them according to pattern of indices and pro-

cueding casewise.

First note that by the usual moment expansion of cumulants (see, for example,

(3.39) of Kendall and Stuart (1963)), each cum may be expanded into a linear
m

combination, the first term of which is

(5.7) E[V. I V V. Vim .

and the remaining terms of which are multiples of products of moments of all the

various partitions of

{V i - i V i V., I
, V . V .
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Next a means of counting the nonzero terms in (5.b) will be developed.

Since special attention must be paid to duplications among il , i m m

and j .... , the fo llowing relabeling of tihe indices will be made

(i) Suppose that r is the number of ].... J that arc distinct. Relabel

these indices (each time they occur) by j ..... I

(ii) Suppose that the number of iI ... im i'l .... i', that are the same as

one of , .... ,i is s. Each of these will now be denoted by the appro-
r

priate j.

(iii) Suppose that, out of what remain of i 1 .... ,i m , i ..... ' that of them are
lm

distinct. Denote these (each time they occur) by i .,. Also let s

0 denote the number of times the new iI appears, and similarly for s,...s

Now by rearranging the V's, note that (5.7) may be rewritten as

E[V. 's V....V is]
.Ii 11] j i

where "V. 's" denotes the product of al.l V's whose first index is one of jl,... '

and where "V 's" denotes the product of all V's whose first index is iI, etc.

Since there seems to be no chance of confusion, both notations will be used in

the following.

Now group the nonzero cumulant in (5.6) according to the pattern of duplica-

* tion of indices (eg: cum (V V V V ) is in the same group as cum (V V ,V V)).

2 12 12' 24 14 2 53 539 31 51

Note that the number of cumulants falling into each group is (as u ) of the

r+ t
order O(nr). So to verify (5.6), it is enough to show that, for each duplica-

tion group,
r+t-m T1+3/y)m/M)

sup n CuM ( ) = o(n 1+
11 m

where M is sufficiently large, and m=2,3 ... ,M.

fo tits end, define the set

. -S: .. 7 : . . : : . .. " :: i - : 7 . . -7i:7 : ::>:7- :::: ;. : .. . : :
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,1 = iX . .... ,X. .r

and let E['J] denote the usual conditional (on X. . expectation opera-

tor. Now letting B denote a generic constant, by (3.9), (3.13), (5.5) and in-

tegration by substitution,

r+t-m r+t-
nrt-1 E(V..'s V 's.V. .s) = n "E(V s EIV. s].]'-E[V. 'sjJI)j13 ilt j  jJzl t j ,

-Sh-S
<Bn r+t-m n___n I . n ... n

(5.8) -MISE s /  Sl2s/
MISE MISEt-

= n ( m-r-t)h (2m-t) I l ' m  = B ( h - M S m ( n ) ( 2 m- r - t ) hm - r

While this bound is sufficient to handle many of the patterns of duplication of

indices, refined computations of several types are required for others.

To see what cases are necessary, note that in (5.6), the cur ( ) are non-

zero only when no subset of the arguments of cum is independent of the remaining
m

arguments (see, for example, (iii) in Theorem 2.3.1 of Brillinger (1979)). In

other words, there must be at least m-i pairs of arguments of cUm ( ) which

have an index in common. Thus, for each nonzero cumin( ), the following counting

argument is valid:

m-1 < #(pairs with a common index)

- #(pairs with an i in common) + 2i(pairs with a j in common)

(5.9) < Pt(i's available) - 1"(distinct i's)] +

+ [#(V. .s) + #(j's available) - ii(distinct j's)]

- [(2m-s)-t] + [s+m-r] 3m-t-r.

It follows from this that

(5.10) 2m-t-r -' -1.

The bound (5.8) will now hb either used or refined in a casewise manner.

Case _: m-r i" m/12 and 2m-r-t I)

07
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It follows from (3.1) that

(5.11) sup (nh)- IMISE(h)- 1 = 0(0).
h

Thus from (3.8) and (5.8)

r+t-m E(-j . .s -i

sup n E(V 's V. .'s"*V. s)= 0 (h-m 1 2 ) -)m/1
h t-tJ '

But similar computations show that the same bound may be obtained for the ot'ier

products of moments appearing in cum( ). Thus

r+t-m J(V V V O(n- 0m/12) -o ( t1+3/)1/m

h ilil Vimim i ='nm

by taking M sufficiently large.

Case 2: m-r L m/12 and 21n-r-t = -1

Here the basic bound (5.8) needs some modification. Since r . m, note that

m-t = r-m-- 0

and hence

t > m.

Thus at least two of si ... ,s t must be equal to t. Now relabel i ... ,i t so that

st-I and s are both 1. The bound (5.8) may now be modified to give

r+t-m E(V..'s V...s..V t .~
n ' 11 lJ t

-s- s( V1 itst_2h-(St_2-s)

-Sh-s

Bnrtmn n lh_...n
MISKs/2 s /2 s /2

MISt- MISE

E[vi[V. !J]E[Vt . .

But from (5.5) 

! 
X

iJ1 K h )f(x)d x - f(X.) f(X )jw(X ) MISE-

E jV. i'I]= (n-i) ih \ j 1.]

Thus, bv (3.2) and integration by substitution,

0J

.. .. .. .. .- . .... .. . - . ... .: .:. .. .' .
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(5.12) E(E[Ui j]2) = (n-i) s (h)MISE(h)

and so, by the Schwartz Inequality,

E E[Vit.1 j IIE[Vt , J]: < (n-l)- sf(h)MISE(h)
- I

Hence, from (3.1)

r+t-m '•" s
sup n E(V..'s V. *'s"v

(5.13) sup B[(nh)- (m-i) s(h)MISF(h)
-m ] (n h)- (2m- r- t+) hm- r

ff
h

0( 1m / 12 ) = O(n - 5m/12)

But similar computations show that the same bound may be obtained for the other

products of moments appearing in cum ( ). Thusm

- .m/12 -(+3/y)ai/M
sup n cum m(V i i v ,V... V V, im) = O(n = O(n

by taking M sufficiently large.

Case 3: m-r < m/12 and 2m-r-t m/12

It follows from (3.8) that

(nh) n n

Thus, since r _ m, by (5.8) and (5.11)

slip nr+t-m F(V. .'s V, S) = 0(01nM/12
' J 11 t

H,.nce, as above,
--Ira/1 2) (l+3/,-)m/M)

sup nr+L-r cum iV . V. . V.,. )v = O(n = /1n ,
h m il i] m mmJ

for M suf f Icicit Iv lar,e.

Ca,, a: m-r m/12, 0 < 2m-r-t m/12, and s > m/3

For this case, consider the factors E[Vij 's JI appearing in the tomputation

-6 .1 J.: 7 7 - _ . , :.i 7 7 , .7- ...
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8) It will lie coni Venient to Ipply the name "'singleton'" to those Ior which

Ote corres1pond inc -;.=I. Note thiat

t - ";(singleton1s) < (' availaible) - u'(places to put V's) (2m-s)-t

<, n In e t on _ 2(t,-m)+ 2 2(m- r-m /12) + s -2m /12 + in /3 = in/ 6

N ow i t i s des ired to 0Use the computat ion (5 .12) to generate extra factors o f

AMh from the above singletonS. To do this ,for each~ of "' .. r'atms 2

sin,. 1 tons- Laviuc4 th it part icular .j may be employed. Let U couint the number of

siiiclectons that may be used. Since

r = t(distiiuct j'.,) llm/12

* note that

(5.15)) u m r/6 - m/12 =m/12.

Now relabel i .i so that the above singletons are indexed by 1-
L' t-u+1'** t:

Note that the computation (5.8) may be refined to give

r+t-ni
n1 ,E(V.. 's V. ..s**V. .'Is)I

1.1 1 1]1

< Bnr+tmn_ h n h' nS(Sh l
s/2 c 2 s /2

MISE 1.ISE 1 MISE u

-(3m-r-t) - (2m-t) u/2 -M

Bn 11 f(h)u MISE <

*B1 (nh) mMISEF ] (nh) (2m-rt 11 (r)sf(h), 2

* Bu~t now, from (3.8) and (3.15), as above

n(V's.....V ')r+t-m 0 ((T2f)m/24 ) = 0 ( m/ 12)

su n 171isVij ~
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Thus, as above,

S P cum (V V . ... . V r'  "1 nl12 - I l/ )/M)
h .. i 1 m I ill

,r M sut ficient lv larie.

Case 3: n-r < m/12, 2m-r-t -1, nd s- m/.

hi case is an extension of Case 4 in the same way that (:se '2 extends ( aset

1. Note that in the present case, the computation (5. 14) can be improvcd to

::(siniletons) " 2(m-r+l )+s - 2+m/3

Thus (5.17) can be improved to

u > 2+m/4

The extra two singletons are used to generate an extra sf(h) which is used as in

(5.13). The result is:

slp ,cur (V. VilV . . V.,. ) ) = o(n-)

h ' 1 ] I imim m'im

for M sufficiently large. S

Case 0: m-r < /2, 2m-r-t 0 0, and s m/3

First recall that cum ( ) is nonzero only if at least (ni-I) pairs of argu-

4 :ents o; cure ( ) have an index in common. Let v denote the number of such pairs
m

which have an i in common, but different j's. The counting argument (5.9) mav

be modified to give

m-I L v + (pairs where common index is a j) v + [s+m-r].

TIus

(5.16) v rn-I - rs+i--rj " r-I - [m/3 + m/12] = 7m/12 - 1.

Note that ;t "pair with an i in common, but different j's arisco from

ho)vinuc faictors V., and V.i, (i or some j#j') Now given X . ..... X. , detline the
']1 j

r~indom variable Z by:

Z pa = pairs with Xj.-Xj ,-' 2K h)

where K denotes the length of the compact support of the kernel function K.

-H

O . . . . . . . : i , i. . . . . : _ : :i . .
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Note th,1t, for z=O .. IV,

-C PK ' 1 0(h)

I\ {o note that if one oI the above pairs comes trom V and V. (for cxiipci i 1 i '1 i2•.

md i. X - 2 2K 1, then
• (1 2 q q r

Ef V. s'- 3] E[V V " = EfV (x) rIl]V . (x) IJf(x)dx
I 1 1  l 2  1 r

where q, q2 J, and where

X -x _
V(X) = (n-I) K(--- (X) F(.)W(x.)'NIS

l r1 which it folloxs that p

q r
IE{V..'sJii _. IE[V (X) .V. x) 3] f(x)dx =

I.

dx +f dx +

{x: x-X. j <K*h1 x: Ix-X. ilK*hj1 - 32

dx

'x: x-X !.-K*h and ,x-X. NK*h3

-s -1)q q2 ql+qfd I th
1 2 1 2n I

1h fdx + h dx + h 'dx< Bh

MISE

By similar computations, for each of the above pairs V., and V.. ,, on the evnt

x.-X., > 2K*h! at least one of the E[V i 'si X's] all ows the lactorin, out of
1 .1 J J-

an idditionlI power of h. Thus when Z=z, an additional hv-z may be Used in the 1

):is ic bound (3. 8). Letting E( ;Z=z) denote expectation only over the event

Z=z, (5.8) mav be modified rto

nr+t-m.. S V. ''s . .V<,E(V. ' L.'i'V. s

nr+ t-m E(V. 's V. Is'-'.V. .'s; Z=z)l I
z -O 1 I t]1



-25-

r+t-m Bh(V -Z) ( 3 m-r-t)h( 2 m-t)lSEmhz = O(hv)

z=0

Thus,

sup nr+t-m E(V..'s V. .'s"V .'s)! = O(n - v)

h j ij itJ

At first glance, it looks like the above techniques may not be useful for

handling the other "products of moments" which appear in the expansion of cum ( ).
m

This is because the above effect of "generating a factor of h" from E[V. 'slJI

will be lost when V.. and V.., fall into different subsets of the partition.

But this is actually not a problem, because splitting into partitions already

generates extra factors of hd (from integration by substitution), so that the

4 above bounds still apply. Thus, using (5.16) and the fact that m > 2,

sup n r+t-m cum(V. V. ...,V. . V. )sun I lil VI j i 1m~ M Vm I

= O n-v) = 01) o(n(l+ 3 /r,)m/M)=O(n O(n- = ,

for M sufficiently large.

Case 7: m-r < m/12, 2m-r-t = -1, and s < m/3

Recall that Case 5 extends Case 4 in the same way that Case 2 extends Case

}. The present case extends Case 6 in the same way. The details are straight

forward and hence are omitted.

Now by (5.10) all cases have been exhausted. This verifies (5.6) which

completes the proof of Lemma Bi.

Proof of Lemma B2:

To check that 1I - 0, from (3.14), (5.1) and (5.4) write

-1
A(h) = N(h)MISE(h) - 1,

where

-°.6. ~
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0n

In f(2f-)
(h) [f(xh) - f(x f (X.)w(X.).

Note that for =I,...,L and ht_[h _l'hQ],

IN(h)-N(hJ N(h ) ISE(h)-MISE(h) I
!A(h) - A(h,)l < ' +

MISE(h) MISE(hz) MISE(h)

Thus, by Lemma Bi, the proof of Lemma B2 will be complete when it is seen that

(5.17) sup IN(h)-N(h )!MISE(h)- 0
Z,1

in probability, and that

(5.18) sup jMISE(h,)-MISE(h)IMISE(h)- I  0.
,h A

0 To verify (5.17), note that by (1.3) and the algebraic identity a 2_b2= (a-b)(a+b),

i J^

IN(h)-N(h ,)! < n- l l(f (Xj'h)-f (Xj'h )

(fj (xj ,h)+fj (Xi Ph )-2f (X) M - (X)(.w(X.) <  '

SX.-X. X.-X.

_ n- (n-l) - " h - -- K(
j=I i#j

(SUP f.(xh)+sup fJ(xh,) + 2f(XJ))f (Xj)w(X.)

x jx i J

But now by (1.3), (3.8) and (3.13), for B a generic constant

0sup Sup (x,h) S p 1pg:'(u) < Bh- 1 = Bnl-

and also by (5.2)

I y- 1 1K( ) < 'h -1. l 1 h -1h 1j K&-2 -x ) - y K &- i h - sup iK(u) { + hl MJh-
h u

(5.19)

B(n-3 ' + 1 (n 3 /-Y

0 It follows from the above and (3.1) that

"- 4 b"
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IN(h)-N(h) Bn1-26

sup < - 0

Z,h MISE(h) n

To check (5.18) note that by the above method

IMISE(h )-MISE(h)l . EIf(x,h )-f(x,h) 'I. f ( x , h ) + f ( x , h ) - 2 f( x ) iw(x)dx.

But by (1.2) and (5.19),

If(x,hk)-f(x,h)l < Bn 2 -

Thus, since Elf(x,h¢) I is bounded,

IMISE(h )-MISE(h) Bn-2-6
sup I B -1 0 .

,h MISE(h) n

This completes the proof of Lemma B2 and hence also that of Lemma B.
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